Description: If F is a section of G , then F is a monomorphism. A monomorphism that arises from a section is also known as asplit monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sectmon.b | |
|
sectmon.m | |
||
sectmon.s | |
||
sectmon.c | |
||
sectmon.x | |
||
sectmon.y | |
||
sectmon.1 | |
||
Assertion | sectmon | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sectmon.b | |
|
2 | sectmon.m | |
|
3 | sectmon.s | |
|
4 | sectmon.c | |
|
5 | sectmon.x | |
|
6 | sectmon.y | |
|
7 | sectmon.1 | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | 1 8 9 10 3 4 5 6 | issect | |
12 | 7 11 | mpbid | |
13 | 12 | simp1d | |
14 | oveq2 | |
|
15 | 12 | simp3d | |
16 | 15 | ad2antrr | |
17 | 16 | oveq1d | |
18 | 4 | ad2antrr | |
19 | simplr | |
|
20 | 5 | ad2antrr | |
21 | 6 | ad2antrr | |
22 | simprl | |
|
23 | 13 | ad2antrr | |
24 | 12 | simp2d | |
25 | 24 | ad2antrr | |
26 | 1 8 9 18 19 20 21 22 23 20 25 | catass | |
27 | 1 8 10 18 19 9 20 22 | catlid | |
28 | 17 26 27 | 3eqtr3d | |
29 | 16 | oveq1d | |
30 | simprr | |
|
31 | 1 8 9 18 19 20 21 30 23 20 25 | catass | |
32 | 1 8 10 18 19 9 20 30 | catlid | |
33 | 29 31 32 | 3eqtr3d | |
34 | 28 33 | eqeq12d | |
35 | 14 34 | imbitrid | |
36 | 35 | ralrimivva | |
37 | 36 | ralrimiva | |
38 | 1 8 9 2 4 5 6 | ismon2 | |
39 | 13 37 38 | mpbir2and | |