Metamath Proof Explorer


Theorem sectmon

Description: If F is a section of G , then F is a monomorphism. A monomorphism that arises from a section is also known as asplit monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses sectmon.b B=BaseC
sectmon.m M=MonoC
sectmon.s S=SectC
sectmon.c φCCat
sectmon.x φXB
sectmon.y φYB
sectmon.1 φFXSYG
Assertion sectmon φFXMY

Proof

Step Hyp Ref Expression
1 sectmon.b B=BaseC
2 sectmon.m M=MonoC
3 sectmon.s S=SectC
4 sectmon.c φCCat
5 sectmon.x φXB
6 sectmon.y φYB
7 sectmon.1 φFXSYG
8 eqid HomC=HomC
9 eqid compC=compC
10 eqid IdC=IdC
11 1 8 9 10 3 4 5 6 issect φFXSYGFXHomCYGYHomCXGXYcompCXF=IdCX
12 7 11 mpbid φFXHomCYGYHomCXGXYcompCXF=IdCX
13 12 simp1d φFXHomCY
14 oveq2 FxXcompCYg=FxXcompCYhGxYcompCXFxXcompCYg=GxYcompCXFxXcompCYh
15 12 simp3d φGXYcompCXF=IdCX
16 15 ad2antrr φxBgxHomCXhxHomCXGXYcompCXF=IdCX
17 16 oveq1d φxBgxHomCXhxHomCXGXYcompCXFxXcompCXg=IdCXxXcompCXg
18 4 ad2antrr φxBgxHomCXhxHomCXCCat
19 simplr φxBgxHomCXhxHomCXxB
20 5 ad2antrr φxBgxHomCXhxHomCXXB
21 6 ad2antrr φxBgxHomCXhxHomCXYB
22 simprl φxBgxHomCXhxHomCXgxHomCX
23 13 ad2antrr φxBgxHomCXhxHomCXFXHomCY
24 12 simp2d φGYHomCX
25 24 ad2antrr φxBgxHomCXhxHomCXGYHomCX
26 1 8 9 18 19 20 21 22 23 20 25 catass φxBgxHomCXhxHomCXGXYcompCXFxXcompCXg=GxYcompCXFxXcompCYg
27 1 8 10 18 19 9 20 22 catlid φxBgxHomCXhxHomCXIdCXxXcompCXg=g
28 17 26 27 3eqtr3d φxBgxHomCXhxHomCXGxYcompCXFxXcompCYg=g
29 16 oveq1d φxBgxHomCXhxHomCXGXYcompCXFxXcompCXh=IdCXxXcompCXh
30 simprr φxBgxHomCXhxHomCXhxHomCX
31 1 8 9 18 19 20 21 30 23 20 25 catass φxBgxHomCXhxHomCXGXYcompCXFxXcompCXh=GxYcompCXFxXcompCYh
32 1 8 10 18 19 9 20 30 catlid φxBgxHomCXhxHomCXIdCXxXcompCXh=h
33 29 31 32 3eqtr3d φxBgxHomCXhxHomCXGxYcompCXFxXcompCYh=h
34 28 33 eqeq12d φxBgxHomCXhxHomCXGxYcompCXFxXcompCYg=GxYcompCXFxXcompCYhg=h
35 14 34 imbitrid φxBgxHomCXhxHomCXFxXcompCYg=FxXcompCYhg=h
36 35 ralrimivva φxBgxHomCXhxHomCXFxXcompCYg=FxXcompCYhg=h
37 36 ralrimiva φxBgxHomCXhxHomCXFxXcompCYg=FxXcompCYhg=h
38 1 8 9 2 4 5 6 ismon2 φFXMYFXHomCYxBgxHomCXhxHomCXFxXcompCYg=FxXcompCYhg=h
39 13 37 38 mpbir2and φFXMY