Description: D is a ring homomorphism. (Contributed by SN, 15-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | selvcllem2.u | |
|
selvcllem2.t | |
||
selvcllem2.c | |
||
selvcllem2.d | |
||
selvcllem2.i | |
||
selvcllem2.j | |
||
selvcllem2.r | |
||
Assertion | selvcllem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | selvcllem2.u | |
|
2 | selvcllem2.t | |
|
3 | selvcllem2.c | |
|
4 | selvcllem2.d | |
|
5 | selvcllem2.i | |
|
6 | selvcllem2.j | |
|
7 | selvcllem2.r | |
|
8 | 1 2 5 6 7 | selvcllem1 | |
9 | eqid | |
|
10 | 3 9 | asclrhm | |
11 | 8 10 | syl | |
12 | 1 | mplassa | |
13 | 5 7 12 | syl2anc | |
14 | 2 6 13 | mplsca | |
15 | 14 | oveq1d | |
16 | 11 15 | eleqtrrd | |
17 | eqid | |
|
18 | eqid | |
|
19 | 17 18 | asclrhm | |
20 | 13 19 | syl | |
21 | rhmco | |
|
22 | 16 20 21 | syl2anc | |
23 | 1 5 7 | mplsca | |
24 | 23 | oveq1d | |
25 | 22 24 | eleqtrrd | |
26 | 4 25 | eqeltrid | |