Metamath Proof Explorer


Theorem selvcllem2

Description: D is a ring homomorphism. (Contributed by SN, 15-Dec-2023)

Ref Expression
Hypotheses selvcllem2.u U=ImPolyR
selvcllem2.t T=JmPolyU
selvcllem2.c C=algScT
selvcllem2.d D=CalgScU
selvcllem2.i φIV
selvcllem2.j φJW
selvcllem2.r φRCRing
Assertion selvcllem2 φDRRingHomT

Proof

Step Hyp Ref Expression
1 selvcllem2.u U=ImPolyR
2 selvcllem2.t T=JmPolyU
3 selvcllem2.c C=algScT
4 selvcllem2.d D=CalgScU
5 selvcllem2.i φIV
6 selvcllem2.j φJW
7 selvcllem2.r φRCRing
8 1 2 5 6 7 selvcllem1 φTAssAlg
9 eqid ScalarT=ScalarT
10 3 9 asclrhm TAssAlgCScalarTRingHomT
11 8 10 syl φCScalarTRingHomT
12 1 mplassa IVRCRingUAssAlg
13 5 7 12 syl2anc φUAssAlg
14 2 6 13 mplsca φU=ScalarT
15 14 oveq1d φURingHomT=ScalarTRingHomT
16 11 15 eleqtrrd φCURingHomT
17 eqid algScU=algScU
18 eqid ScalarU=ScalarU
19 17 18 asclrhm UAssAlgalgScUScalarURingHomU
20 13 19 syl φalgScUScalarURingHomU
21 rhmco CURingHomTalgScUScalarURingHomUCalgScUScalarURingHomT
22 16 20 21 syl2anc φCalgScUScalarURingHomT
23 1 5 7 mplsca φR=ScalarU
24 23 oveq1d φRRingHomT=ScalarURingHomT
25 22 24 eleqtrrd φCalgScURRingHomT
26 4 25 eqeltrid φDRRingHomT