Metamath Proof Explorer


Theorem sersub

Description: The difference of two infinite series. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses sersub.1 φNM
sersub.2 φkMNFk
sersub.3 φkMNGk
sersub.4 φkMNHk=FkGk
Assertion sersub φseqM+HN=seqM+FNseqM+GN

Proof

Step Hyp Ref Expression
1 sersub.1 φNM
2 sersub.2 φkMNFk
3 sersub.3 φkMNGk
4 sersub.4 φkMNHk=FkGk
5 addcl xyx+y
6 5 adantl φxyx+y
7 subcl xyxy
8 7 adantl φxyxy
9 addsub4 xyzwx+y-z+w=xz+y-w
10 9 eqcomd xyzwxz+y-w=x+y-z+w
11 10 adantl φxyzwxz+y-w=x+y-z+w
12 6 8 11 1 2 3 4 seqcaopr2 φseqM+HN=seqM+FNseqM+GN