Metamath Proof Explorer


Theorem setind

Description: Set (epsilon) induction. Theorem 5.22 of TakeutiZaring p. 21. (Contributed by NM, 17-Sep-2003)

Ref Expression
Assertion setind xxAxAA=V

Proof

Step Hyp Ref Expression
1 ssindif0 yAyVA=
2 sseq1 x=yxAyA
3 eleq1w x=yxAyA
4 2 3 imbi12d x=yxAxAyAyA
5 4 spvv xxAxAyAyA
6 1 5 biimtrrid xxAxAyVA=yA
7 eldifn yVA¬yA
8 6 7 nsyli xxAxAyVA¬yVA=
9 8 imp xxAxAyVA¬yVA=
10 9 nrexdv xxAxA¬yVAyVA=
11 zfregs VAyVAyVA=
12 11 necon1bi ¬yVAyVA=VA=
13 10 12 syl xxAxAVA=
14 vdif0 A=VVA=
15 13 14 sylibr xxAxAA=V