Metamath Proof Explorer


Theorem setsfun0

Description: A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun is useful for proofs based on isstruct2 which requires Fun ( F \ { (/) } ) for F to be an extensible structure. (Contributed by AV, 7-Jun-2021)

Ref Expression
Assertion setsfun0 GVFunGIUEWFunGsSetIE

Proof

Step Hyp Ref Expression
1 funres FunGFunGVdomIE
2 1 adantl GVFunGFunGVdomIE
3 2 adantr GVFunGIUEWFunGVdomIE
4 funsng IUEWFunIE
5 4 adantl GVFunGIUEWFunIE
6 dmres domGVdomIE=VdomIEdomG
7 6 ineq1i domGVdomIEdomIE=VdomIEdomGdomIE
8 in32 VdomIEdomGdomIE=VdomIEdomIEdomG
9 disjdifr VdomIEdomIE=
10 9 ineq1i VdomIEdomIEdomG=domG
11 0in domG=
12 8 10 11 3eqtri VdomIEdomGdomIE=
13 7 12 eqtri domGVdomIEdomIE=
14 13 a1i GVFunGIUEWdomGVdomIEdomIE=
15 funun FunGVdomIEFunIEdomGVdomIEdomIE=FunGVdomIEIE
16 3 5 14 15 syl21anc GVFunGIUEWFunGVdomIEIE
17 difundir GVdomIEIE=GVdomIEIE
18 resdifcom GVdomIE=GVdomIE
19 18 a1i GVFunGIUEWGVdomIE=GVdomIE
20 elex IUIV
21 elex EWEV
22 20 21 anim12i IUEWIVEV
23 opnz IEIVEV
24 22 23 sylibr IUEWIE
25 24 adantl GVFunGIUEWIE
26 disjsn2 IEIE=
27 disjdif2 IE=IE=IE
28 25 26 27 3syl GVFunGIUEWIE=IE
29 19 28 uneq12d GVFunGIUEWGVdomIEIE=GVdomIEIE
30 17 29 eqtrid GVFunGIUEWGVdomIEIE=GVdomIEIE
31 30 funeqd GVFunGIUEWFunGVdomIEIEFunGVdomIEIE
32 16 31 mpbird GVFunGIUEWFunGVdomIEIE
33 opex IEV
34 33 a1i FunGIEV
35 setsvalg GVIEVGsSetIE=GVdomIEIE
36 34 35 sylan2 GVFunGGsSetIE=GVdomIEIE
37 36 difeq1d GVFunGGsSetIE=GVdomIEIE
38 37 funeqd GVFunGFunGsSetIEFunGVdomIEIE
39 38 adantr GVFunGIUEWFunGsSetIEFunGVdomIEIE
40 32 39 mpbird GVFunGIUEWFunGsSetIE