Metamath Proof Explorer


Theorem sge0resrn

Description: The sum of nonnegative extended reals restricted to the range of a function is less than or equal to the sum of the composition of the two functions (well-order hypothesis allows to avoid using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0resrn.a φ A V
sge0resrn.f φ F : B 0 +∞
sge0resrn.g φ G : A B
sge0resrn.r φ R We A
Assertion sge0resrn φ sum^ F ran G sum^ F G

Proof

Step Hyp Ref Expression
1 sge0resrn.a φ A V
2 sge0resrn.f φ F : B 0 +∞
3 sge0resrn.g φ G : A B
4 sge0resrn.r φ R We A
5 3 ffnd φ G Fn A
6 5 1 4 wessf1orn φ x 𝒫 A G x : x 1-1 onto ran G
7 1 3ad2ant1 φ x 𝒫 A G x : x 1-1 onto ran G A V
8 2 3ad2ant1 φ x 𝒫 A G x : x 1-1 onto ran G F : B 0 +∞
9 3 3ad2ant1 φ x 𝒫 A G x : x 1-1 onto ran G G : A B
10 simp2 φ x 𝒫 A G x : x 1-1 onto ran G x 𝒫 A
11 simp3 φ x 𝒫 A G x : x 1-1 onto ran G G x : x 1-1 onto ran G
12 7 8 9 10 11 sge0resrnlem φ x 𝒫 A G x : x 1-1 onto ran G sum^ F ran G sum^ F G
13 12 3exp φ x 𝒫 A G x : x 1-1 onto ran G sum^ F ran G sum^ F G
14 13 rexlimdv φ x 𝒫 A G x : x 1-1 onto ran G sum^ F ran G sum^ F G
15 6 14 mpd φ sum^ F ran G sum^ F G