Metamath Proof Explorer


Theorem sge0snmpt

Description: A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0snmpt.a φAV
sge0snmpt.c φC0+∞
sge0snmpt.b k=AB=C
Assertion sge0snmpt φsum^kAB=C

Proof

Step Hyp Ref Expression
1 sge0snmpt.a φAV
2 sge0snmpt.c φC0+∞
3 sge0snmpt.b k=AB=C
4 elsni kAk=A
5 4 3 syl kAB=C
6 5 adantl φkAB=C
7 2 adantr φkAC0+∞
8 6 7 eqeltrd φkAB0+∞
9 eqid kAB=kAB
10 8 9 fmptd φkAB:A0+∞
11 1 10 sge0sn φsum^kAB=kABA
12 eqidd φkAB=kAB
13 3 adantl φk=AB=C
14 snidg AVAA
15 1 14 syl φAA
16 12 13 15 2 fvmptd φkABA=C
17 11 16 eqtrd φsum^kAB=C