Metamath Proof Explorer


Theorem sgncl

Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018)

Ref Expression
Assertion sgncl A * sgn A 1 0 1

Proof

Step Hyp Ref Expression
1 simpr A * A = 0 A = 0
2 1 fveq2d A * A = 0 sgn A = sgn 0
3 sgn0 sgn 0 = 0
4 2 3 eqtrdi A * A = 0 sgn A = 0
5 c0ex 0 V
6 5 tpid2 0 1 0 1
7 4 6 eqeltrdi A * A = 0 sgn A 1 0 1
8 sgnn A * A < 0 sgn A = 1
9 negex 1 V
10 9 tpid1 1 1 0 1
11 8 10 eqeltrdi A * A < 0 sgn A 1 0 1
12 11 adantlr A * A 0 A < 0 sgn A 1 0 1
13 sgnp A * 0 < A sgn A = 1
14 1ex 1 V
15 14 tpid3 1 1 0 1
16 13 15 eqeltrdi A * 0 < A sgn A 1 0 1
17 16 adantlr A * A 0 0 < A sgn A 1 0 1
18 0xr 0 *
19 xrlttri2 A * 0 * A 0 A < 0 0 < A
20 19 biimpa A * 0 * A 0 A < 0 0 < A
21 18 20 mpanl2 A * A 0 A < 0 0 < A
22 12 17 21 mpjaodan A * A 0 sgn A 1 0 1
23 7 22 pm2.61dane A * sgn A 1 0 1