Metamath Proof Explorer


Theorem sgnp

Description: The signum of a positive extended real is 1. (Contributed by David A. Wheeler, 15-May-2015)

Ref Expression
Assertion sgnp A*0<AsgnA=1

Proof

Step Hyp Ref Expression
1 sgnval A*sgnA=ifA=00ifA<011
2 1 adantr A*0<AsgnA=ifA=00ifA<011
3 0xr 0*
4 xrltne 0*A*0<AA0
5 3 4 mp3an1 A*0<AA0
6 5 neneqd A*0<A¬A=0
7 6 iffalsed A*0<AifA=00ifA<011=ifA<011
8 xrltnsym 0*A*0<A¬A<0
9 3 8 mpan A*0<A¬A<0
10 9 imp A*0<A¬A<0
11 10 iffalsed A*0<AifA<011=1
12 2 7 11 3eqtrd A*0<AsgnA=1