Metamath Proof Explorer


Theorem sgnsv

Description: The sign mapping. (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypotheses sgnsval.b B=BaseR
sgnsval.0 0˙=0R
sgnsval.l <˙=<R
sgnsval.s S=sgnsR
Assertion sgnsv RVS=xBifx=0˙0if0˙<˙x11

Proof

Step Hyp Ref Expression
1 sgnsval.b B=BaseR
2 sgnsval.0 0˙=0R
3 sgnsval.l <˙=<R
4 sgnsval.s S=sgnsR
5 elex RVRV
6 fveq2 r=RBaser=BaseR
7 6 1 eqtr4di r=RBaser=B
8 fveq2 r=R0r=0R
9 8 2 eqtr4di r=R0r=0˙
10 9 adantr r=RxBaser0r=0˙
11 10 eqeq2d r=RxBaserx=0rx=0˙
12 fveq2 r=R<r=<R
13 12 3 eqtr4di r=R<r=<˙
14 13 adantr r=RxBaser<r=<˙
15 eqidd r=RxBaserx=x
16 10 14 15 breq123d r=RxBaser0r<rx0˙<˙x
17 16 ifbid r=RxBaserif0r<rx11=if0˙<˙x11
18 11 17 ifbieq2d r=RxBaserifx=0r0if0r<rx11=ifx=0˙0if0˙<˙x11
19 7 18 mpteq12dva r=RxBaserifx=0r0if0r<rx11=xBifx=0˙0if0˙<˙x11
20 df-sgns sgns=rVxBaserifx=0r0if0r<rx11
21 19 20 1 mptfvmpt RVsgnsR=xBifx=0˙0if0˙<˙x11
22 5 21 syl RVsgnsR=xBifx=0˙0if0˙<˙x11
23 4 22 eqtrid RVS=xBifx=0˙0if0˙<˙x11