Metamath Proof Explorer


Theorem shftlem

Description: Two ways to write a shifted set ( B + A ) . (Contributed by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion shftlem ABx|xAB=x|yBx=y+A

Proof

Step Hyp Ref Expression
1 df-rab x|xAB=x|xxAB
2 npcan xAx-A+A=x
3 2 ancoms Axx-A+A=x
4 3 eqcomd Axx=x-A+A
5 oveq1 y=xAy+A=x-A+A
6 5 rspceeqv xABx=x-A+AyBx=y+A
7 6 expcom x=x-A+AxAByBx=y+A
8 4 7 syl AxxAByBx=y+A
9 8 expimpd AxxAByBx=y+A
10 9 adantr ABxxAByBx=y+A
11 ssel2 ByBy
12 addcl yAy+A
13 11 12 sylan ByBAy+A
14 pncan yAy+A-A=y
15 11 14 sylan ByBAy+A-A=y
16 simplr ByBAyB
17 15 16 eqeltrd ByBAy+A-AB
18 13 17 jca ByBAy+Ay+A-AB
19 18 ancoms AByBy+Ay+A-AB
20 19 anassrs AByBy+Ay+A-AB
21 eleq1 x=y+Axy+A
22 oveq1 x=y+AxA=y+A-A
23 22 eleq1d x=y+AxABy+A-AB
24 21 23 anbi12d x=y+AxxABy+Ay+A-AB
25 20 24 syl5ibrcom AByBx=y+AxxAB
26 25 rexlimdva AByBx=y+AxxAB
27 10 26 impbid ABxxAByBx=y+A
28 27 abbidv ABx|xxAB=x|yBx=y+A
29 1 28 eqtrid ABx|xAB=x|yBx=y+A