Metamath Proof Explorer


Theorem shsel

Description: Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004) (Revised by Mario Carneiro, 29-Jan-2014) (New usage is discouraged.)

Ref Expression
Assertion shsel ASBSCA+BxAyBC=x+y

Proof

Step Hyp Ref Expression
1 shsval ASBSA+B=+A×B
2 1 eleq2d ASBSCA+BC+A×B
3 ax-hfvadd +:×
4 ffn +:×+Fn×
5 3 4 ax-mp +Fn×
6 shss ASA
7 shss BSB
8 xpss12 ABA×B×
9 6 7 8 syl2an ASBSA×B×
10 ovelimab +Fn×A×B×C+A×BxAyBC=x+y
11 5 9 10 sylancr ASBSC+A×BxAyBC=x+y
12 2 11 bitrd ASBSCA+BxAyBC=x+y