Metamath Proof Explorer


Theorem sigaclcu3

Description: A sigma-algebra is closed under countable or finite union. (Contributed by Thierry Arnoux, 6-Mar-2017)

Ref Expression
Hypotheses sigaclcu3.1 φSransigAlgebra
sigaclcu3.2 φN=N=1..^M
sigaclcu3.3 φkNAS
Assertion sigaclcu3 φkNAS

Proof

Step Hyp Ref Expression
1 sigaclcu3.1 φSransigAlgebra
2 sigaclcu3.2 φN=N=1..^M
3 sigaclcu3.3 φkNAS
4 simpr φN=N=
5 4 iuneq1d φN=kNA=kA
6 1 adantr φN=SransigAlgebra
7 3 ralrimiva φkNAS
8 7 adantr φN=kNAS
9 4 raleqdv φN=kNASkAS
10 8 9 mpbid φN=kAS
11 sigaclcu2 SransigAlgebrakASkAS
12 6 10 11 syl2anc φN=kAS
13 5 12 eqeltrd φN=kNAS
14 simpr φN=1..^MN=1..^M
15 14 iuneq1d φN=1..^MkNA=k1..^MA
16 1 adantr φN=1..^MSransigAlgebra
17 7 adantr φN=1..^MkNAS
18 14 raleqdv φN=1..^MkNASk1..^MAS
19 17 18 mpbid φN=1..^Mk1..^MAS
20 sigaclfu2 SransigAlgebrak1..^MASk1..^MAS
21 16 19 20 syl2anc φN=1..^Mk1..^MAS
22 15 21 eqeltrd φN=1..^MkNAS
23 13 22 2 mpjaodan φkNAS