Metamath Proof Explorer


Theorem sigaclcu3

Description: A sigma-algebra is closed under countable or finite union. (Contributed by Thierry Arnoux, 6-Mar-2017)

Ref Expression
Hypotheses sigaclcu3.1 φ S ran sigAlgebra
sigaclcu3.2 φ N = N = 1 ..^ M
sigaclcu3.3 φ k N A S
Assertion sigaclcu3 φ k N A S

Proof

Step Hyp Ref Expression
1 sigaclcu3.1 φ S ran sigAlgebra
2 sigaclcu3.2 φ N = N = 1 ..^ M
3 sigaclcu3.3 φ k N A S
4 simpr φ N = N =
5 4 iuneq1d φ N = k N A = k A
6 1 adantr φ N = S ran sigAlgebra
7 3 ralrimiva φ k N A S
8 7 adantr φ N = k N A S
9 4 raleqdv φ N = k N A S k A S
10 8 9 mpbid φ N = k A S
11 sigaclcu2 S ran sigAlgebra k A S k A S
12 6 10 11 syl2anc φ N = k A S
13 5 12 eqeltrd φ N = k N A S
14 simpr φ N = 1 ..^ M N = 1 ..^ M
15 14 iuneq1d φ N = 1 ..^ M k N A = k 1 ..^ M A
16 1 adantr φ N = 1 ..^ M S ran sigAlgebra
17 7 adantr φ N = 1 ..^ M k N A S
18 14 raleqdv φ N = 1 ..^ M k N A S k 1 ..^ M A S
19 17 18 mpbid φ N = 1 ..^ M k 1 ..^ M A S
20 sigaclfu2 S ran sigAlgebra k 1 ..^ M A S k 1 ..^ M A S
21 16 19 20 syl2anc φ N = 1 ..^ M k 1 ..^ M A S
22 15 21 eqeltrd φ N = 1 ..^ M k N A S
23 13 22 2 mpjaodan φ k N A S