Metamath Proof Explorer


Theorem sigarmf

Description: Signed area is additive (with respect to subtraction) by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017)

Ref Expression
Hypothesis sigar G=x,yxy
Assertion sigarmf ABCACGB=AGBCGB

Proof

Step Hyp Ref Expression
1 sigar G=x,yxy
2 cjsub ACAC=AC
3 2 oveq1d ACACB=ACB
4 3 3adant2 ABCACB=ACB
5 simp1 ABCA
6 5 cjcld ABCA
7 simp3 ABCC
8 7 cjcld ABCC
9 simp2 ABCB
10 6 8 9 subdird ABCACB=ABCB
11 4 10 eqtrd ABCACB=ABCB
12 11 fveq2d ABCACB=ABCB
13 6 9 mulcld ABCAB
14 8 9 mulcld ABCCB
15 13 14 imsubd ABCABCB=ABCB
16 12 15 eqtrd ABCACB=ABCB
17 5 7 subcld ABCAC
18 1 sigarval ACBACGB=ACB
19 17 9 18 syl2anc ABCACGB=ACB
20 1 sigarval ABAGB=AB
21 20 3adant3 ABCAGB=AB
22 3simpc ABCBC
23 22 ancomd ABCCB
24 1 sigarval CBCGB=CB
25 23 24 syl ABCCGB=CB
26 21 25 oveq12d ABCAGBCGB=ABCB
27 16 19 26 3eqtr4d ABCACGB=AGBCGB