Metamath Proof Explorer


Theorem sin2pim

Description: Sine of a number subtracted from 2 x. _pi . (Contributed by Paul Chapman, 15-Mar-2008)

Ref Expression
Assertion sin2pim Asin2πA=sinA

Proof

Step Hyp Ref Expression
1 negcl AA
2 1z 1
3 sinper A1sin-A+12π=sinA
4 1 2 3 sylancl Asin-A+12π=sinA
5 2cn 2
6 picn π
7 5 6 mulcli 2π
8 7 mullidi 12π=2π
9 8 oveq2i -A+12π=-A+2π
10 negsubdi A2πA2π=-A+2π
11 negsubdi2 A2πA2π=2πA
12 10 11 eqtr3d A2π-A+2π=2πA
13 7 12 mpan2 A-A+2π=2πA
14 9 13 eqtrid A-A+12π=2πA
15 14 fveq2d Asin-A+12π=sin2πA
16 4 15 eqtr3d AsinA=sin2πA
17 sinneg AsinA=sinA
18 16 17 eqtr3d Asin2πA=sinA