Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Properties of pi = 3.14159...
sin2pim
Next ⟩
cos2pim
Metamath Proof Explorer
Ascii
Unicode
Theorem
sin2pim
Description:
Sine of a number subtracted from
2 x. _pi
.
(Contributed by
Paul Chapman
, 15-Mar-2008)
Ref
Expression
Assertion
sin2pim
⊢
A
∈
ℂ
→
sin
⁡
2
⁢
π
−
A
=
−
sin
⁡
A
Proof
Step
Hyp
Ref
Expression
1
negcl
⊢
A
∈
ℂ
→
−
A
∈
ℂ
2
1z
⊢
1
∈
ℤ
3
sinper
⊢
−
A
∈
ℂ
∧
1
∈
ℤ
→
sin
⁡
-
A
+
1
⁢
2
⁢
π
=
sin
⁡
−
A
4
1
2
3
sylancl
⊢
A
∈
ℂ
→
sin
⁡
-
A
+
1
⁢
2
⁢
π
=
sin
⁡
−
A
5
2cn
⊢
2
∈
ℂ
6
picn
⊢
π
∈
ℂ
7
5
6
mulcli
⊢
2
⁢
π
∈
ℂ
8
7
mulid2i
⊢
1
⁢
2
⁢
π
=
2
⁢
π
9
8
oveq2i
⊢
-
A
+
1
⁢
2
⁢
π
=
-
A
+
2
⁢
π
10
negsubdi
⊢
A
∈
ℂ
∧
2
⁢
π
∈
ℂ
→
−
A
−
2
⁢
π
=
-
A
+
2
⁢
π
11
negsubdi2
⊢
A
∈
ℂ
∧
2
⁢
π
∈
ℂ
→
−
A
−
2
⁢
π
=
2
⁢
π
−
A
12
10
11
eqtr3d
⊢
A
∈
ℂ
∧
2
⁢
π
∈
ℂ
→
-
A
+
2
⁢
π
=
2
⁢
π
−
A
13
7
12
mpan2
⊢
A
∈
ℂ
→
-
A
+
2
⁢
π
=
2
⁢
π
−
A
14
9
13
eqtrid
⊢
A
∈
ℂ
→
-
A
+
1
⁢
2
⁢
π
=
2
⁢
π
−
A
15
14
fveq2d
⊢
A
∈
ℂ
→
sin
⁡
-
A
+
1
⁢
2
⁢
π
=
sin
⁡
2
⁢
π
−
A
16
4
15
eqtr3d
⊢
A
∈
ℂ
→
sin
⁡
−
A
=
sin
⁡
2
⁢
π
−
A
17
sinneg
⊢
A
∈
ℂ
→
sin
⁡
−
A
=
−
sin
⁡
A
18
16
17
eqtr3d
⊢
A
∈
ℂ
→
sin
⁡
2
⁢
π
−
A
=
−
sin
⁡
A