Metamath Proof Explorer


Theorem sinasin

Description: The arcsine function is an inverse to sin . This is the main property that justifies the notation arcsin or sin ^ -u 1 . Because sin is not an injection, the other converse identity asinsin is only true under limited circumstances. (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion sinasin AsinarcsinA=A

Proof

Step Hyp Ref Expression
1 asincl AarcsinA
2 sinval arcsinAsinarcsinA=eiarcsinAeiarcsinA2i
3 1 2 syl AsinarcsinA=eiarcsinAeiarcsinA2i
4 ax-icn i
5 mulcl iAiA
6 4 5 mpan AiA
7 6 negcld AiA
8 ax-1cn 1
9 sqcl AA2
10 subcl 1A21A2
11 8 9 10 sylancr A1A2
12 11 sqrtcld A1A2
13 6 7 12 pnpcan2d AiA+1A2--iA+1A2=iAiA
14 efiasin AeiarcsinA=iA+1A2
15 mulneg12 iarcsinAiarcsinA=iarcsinA
16 4 1 15 sylancr AiarcsinA=iarcsinA
17 asinneg AarcsinA=arcsinA
18 17 oveq2d AiarcsinA=iarcsinA
19 16 18 eqtr4d AiarcsinA=iarcsinA
20 19 fveq2d AeiarcsinA=eiarcsinA
21 negcl AA
22 efiasin AeiarcsinA=iA+1A2
23 21 22 syl AeiarcsinA=iA+1A2
24 mulneg2 iAiA=iA
25 4 24 mpan AiA=iA
26 sqneg AA2=A2
27 26 oveq2d A1A2=1A2
28 27 fveq2d A1A2=1A2
29 25 28 oveq12d AiA+1A2=-iA+1A2
30 20 23 29 3eqtrd AeiarcsinA=-iA+1A2
31 14 30 oveq12d AeiarcsinAeiarcsinA=iA+1A2--iA+1A2
32 6 2timesd A2iA=iA+iA
33 2cn 2
34 mulass 2iA2iA=2iA
35 33 4 34 mp3an12 A2iA=2iA
36 6 6 subnegd AiAiA=iA+iA
37 32 35 36 3eqtr4d A2iA=iAiA
38 13 31 37 3eqtr4d AeiarcsinAeiarcsinA=2iA
39 mulcl iarcsinAiarcsinA
40 4 1 39 sylancr AiarcsinA
41 efcl iarcsinAeiarcsinA
42 40 41 syl AeiarcsinA
43 negicn i
44 mulcl iarcsinAiarcsinA
45 43 1 44 sylancr AiarcsinA
46 efcl iarcsinAeiarcsinA
47 45 46 syl AeiarcsinA
48 42 47 subcld AeiarcsinAeiarcsinA
49 id AA
50 2mulicn 2i
51 50 a1i A2i
52 2muline0 2i0
53 52 a1i A2i0
54 48 49 51 53 divmul2d AeiarcsinAeiarcsinA2i=AeiarcsinAeiarcsinA=2iA
55 38 54 mpbird AeiarcsinAeiarcsinA2i=A
56 3 55 eqtrd AsinarcsinA=A