Metamath Proof Explorer


Theorem sinmul

Description: Product of sines can be rewritten as half the difference of certain cosines. This follows from cosadd and cossub . (Contributed by David A. Wheeler, 26-May-2015)

Ref Expression
Assertion sinmul ABsinAsinB=cosABcosA+B2

Proof

Step Hyp Ref Expression
1 cossub ABcosAB=cosAcosB+sinAsinB
2 cosadd ABcosA+B=cosAcosBsinAsinB
3 1 2 oveq12d ABcosABcosA+B=cosAcosB+sinAsinB-cosAcosBsinAsinB
4 coscl AcosA
5 coscl BcosB
6 mulcl cosAcosBcosAcosB
7 4 5 6 syl2an ABcosAcosB
8 sincl AsinA
9 sincl BsinB
10 mulcl sinAsinBsinAsinB
11 8 9 10 syl2an ABsinAsinB
12 pnncan cosAcosBsinAsinBsinAsinBcosAcosB+sinAsinB-cosAcosBsinAsinB=sinAsinB+sinAsinB
13 12 3anidm23 cosAcosBsinAsinBcosAcosB+sinAsinB-cosAcosBsinAsinB=sinAsinB+sinAsinB
14 2times sinAsinB2sinAsinB=sinAsinB+sinAsinB
15 14 adantl cosAcosBsinAsinB2sinAsinB=sinAsinB+sinAsinB
16 13 15 eqtr4d cosAcosBsinAsinBcosAcosB+sinAsinB-cosAcosBsinAsinB=2sinAsinB
17 7 11 16 syl2anc ABcosAcosB+sinAsinB-cosAcosBsinAsinB=2sinAsinB
18 2cn 2
19 mulcom 2sinAsinB2sinAsinB=sinAsinB2
20 18 11 19 sylancr AB2sinAsinB=sinAsinB2
21 3 17 20 3eqtrd ABcosABcosA+B=sinAsinB2
22 21 oveq1d ABcosABcosA+B2=sinAsinB22
23 2ne0 20
24 divcan4 sinAsinB220sinAsinB22=sinAsinB
25 18 23 24 mp3an23 sinAsinBsinAsinB22=sinAsinB
26 11 25 syl ABsinAsinB22=sinAsinB
27 22 26 eqtr2d ABsinAsinB=cosABcosA+B2