Metamath Proof Explorer


Theorem sizusglecusg

Description: The size of a simple graph with n vertices is at most the size of a complete simple graph with n vertices ( n may be infinite). (Contributed by Alexander van der Vekens, 13-Jan-2018) (Revised by AV, 13-Nov-2020)

Ref Expression
Hypotheses fusgrmaxsize.v V=VtxG
fusgrmaxsize.e E=EdgG
usgrsscusgra.h V=VtxH
usgrsscusgra.f F=EdgH
Assertion sizusglecusg GUSGraphHComplUSGraphEF

Proof

Step Hyp Ref Expression
1 fusgrmaxsize.v V=VtxG
2 fusgrmaxsize.e E=EdgG
3 usgrsscusgra.h V=VtxH
4 usgrsscusgra.f F=EdgH
5 2 fvexi EV
6 resiexg EVIEV
7 5 6 mp1i GUSGraphHComplUSGraphIEV
8 1 2 3 4 sizusglecusglem1 GUSGraphHComplUSGraphIE:E1-1F
9 f1eq1 f=IEf:E1-1FIE:E1-1F
10 7 8 9 spcedv GUSGraphHComplUSGraphff:E1-1F
11 10 adantl EFinFFinGUSGraphHComplUSGraphff:E1-1F
12 hashdom EFinFFinEFEF
13 12 adantr EFinFFinGUSGraphHComplUSGraphEFEF
14 brdomg FFinEFff:E1-1F
15 14 adantl EFinFFinEFff:E1-1F
16 15 adantr EFinFFinGUSGraphHComplUSGraphEFff:E1-1F
17 13 16 bitrd EFinFFinGUSGraphHComplUSGraphEFff:E1-1F
18 11 17 mpbird EFinFFinGUSGraphHComplUSGraphEF
19 18 exp31 EFinFFinGUSGraphHComplUSGraphEF
20 1 2 3 4 sizusglecusglem2 GUSGraphHComplUSGraphFFinEFin
21 20 pm2.24d GUSGraphHComplUSGraphFFin¬EFinEF
22 21 3expia GUSGraphHComplUSGraphFFin¬EFinEF
23 22 com13 ¬EFinFFinGUSGraphHComplUSGraphEF
24 19 23 pm2.61i FFinGUSGraphHComplUSGraphEF
25 4 fvexi FV
26 nfile EVFV¬FFinEF
27 5 25 26 mp3an12 ¬FFinEF
28 27 a1d ¬FFinGUSGraphHComplUSGraphEF
29 24 28 pm2.61i GUSGraphHComplUSGraphEF