Metamath Proof Explorer


Theorem slesolvec

Description: Every solution of a system of linear equations represented by a matrix and a vector is a vector. (Contributed by AV, 10-Feb-2019) (Revised by AV, 27-Feb-2019)

Ref Expression
Hypotheses slesolex.a A=NMatR
slesolex.b B=BaseA
slesolex.v V=BaseRN
slesolex.x ·˙=RmaVecMulNN
Assertion slesolvec NRRingXBYVX·˙Z=YZV

Proof

Step Hyp Ref Expression
1 slesolex.a A=NMatR
2 slesolex.b B=BaseA
3 slesolex.v V=BaseRN
4 slesolex.x ·˙=RmaVecMulNN
5 1 2 matrcl XBNFinRV
6 5 simpld XBNFin
7 simpr NNFinNFin
8 simpl NNFinN
9 7 7 8 3jca NNFinNFinNFinN
10 9 ex NNFinNFinNFinN
11 10 adantr NRRingNFinNFinNFinN
12 6 11 syl5com XBNRRingNFinNFinN
13 12 adantr XBYVNRRingNFinNFinN
14 13 impcom NRRingXBYVNFinNFinN
15 simpr NRRingRRing
16 simpr XBYVYV
17 15 16 anim12i NRRingXBYVRRingYV
18 eqid BaseR=BaseR
19 eqid BaseRN×N=BaseRN×N
20 18 19 3 4 3 mavmulsolcl NFinNFinNRRingYVX·˙Z=YZV
21 14 17 20 syl2anc NRRingXBYVX·˙Z=YZV