Metamath Proof Explorer


Theorem smfpreimagtf

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpreimagtf.x _ x F
smfpreimagtf.s φ S SAlg
smfpreimagtf.f φ F SMblFn S
smfpreimagtf.d D = dom F
smfpreimagtf.a φ A
Assertion smfpreimagtf φ x D | A < F x S 𝑡 D

Proof

Step Hyp Ref Expression
1 smfpreimagtf.x _ x F
2 smfpreimagtf.s φ S SAlg
3 smfpreimagtf.f φ F SMblFn S
4 smfpreimagtf.d D = dom F
5 smfpreimagtf.a φ A
6 1 nfdm _ x dom F
7 4 6 nfcxfr _ x D
8 nfcv _ y D
9 nfv y A < F x
10 nfcv _ x A
11 nfcv _ x <
12 nfcv _ x y
13 1 12 nffv _ x F y
14 10 11 13 nfbr x A < F y
15 fveq2 x = y F x = F y
16 15 breq2d x = y A < F x A < F y
17 7 8 9 14 16 cbvrabw x D | A < F x = y D | A < F y
18 17 a1i φ x D | A < F x = y D | A < F y
19 2 3 4 5 smfpreimagt φ y D | A < F y S 𝑡 D
20 18 19 eqeltrd φ x D | A < F x S 𝑡 D