Metamath Proof Explorer


Theorem smfpreimale

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of a closed interval unbounded below is in the subspace sigma-algebra induced by its domain. See Proposition 121B (ii) of Fremlin1 p. 35 (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpreimale.s φSSAlg
smfpreimale.f φFSMblFnS
smfpreimale.d D=domF
smfpreimale.a φA
Assertion smfpreimale φxD|FxAS𝑡D

Proof

Step Hyp Ref Expression
1 smfpreimale.s φSSAlg
2 smfpreimale.f φFSMblFnS
3 smfpreimale.d D=domF
4 smfpreimale.a φA
5 1 3 issmfle φFSMblFnSDSF:DaxD|FxaS𝑡D
6 2 5 mpbid φDSF:DaxD|FxaS𝑡D
7 6 simp3d φaxD|FxaS𝑡D
8 breq2 a=AFxaFxA
9 8 rabbidv a=AxD|Fxa=xD|FxA
10 9 eleq1d a=AxD|FxaS𝑡DxD|FxAS𝑡D
11 10 rspcva AaxD|FxaS𝑡DxD|FxAS𝑡D
12 4 7 11 syl2anc φxD|FxAS𝑡D