Metamath Proof Explorer


Theorem snstriedgval

Description: The set of indexed edges of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See iedgvalsnop for the (degenerate) case where V = ( Basendx ) . (Contributed by AV, 24-Sep-2020)

Ref Expression
Hypotheses snstrvtxval.v VV
snstrvtxval.g G=BasendxV
Assertion snstriedgval VBasendxiEdgG=

Proof

Step Hyp Ref Expression
1 snstrvtxval.v VV
2 snstrvtxval.g G=BasendxV
3 iedgval iEdgG=ifGV×V2ndGefG
4 3 a1i VBasendxiEdgG=ifGV×V2ndGefG
5 necom VBasendxBasendxV
6 fvex BasendxV
7 6 1 2 funsndifnop BasendxV¬GV×V
8 5 7 sylbi VBasendx¬GV×V
9 8 iffalsed VBasendxifGV×V2ndGefG=efG
10 snex BasendxVV
11 10 a1i G=BasendxVBasendxVV
12 2 11 eqeltrid G=BasendxVGV
13 edgfndxid GVefG=Gefndx
14 2 12 13 mp2b efG=Gefndx
15 basendxnedgfndx Basendxefndx
16 15 nesymi ¬efndx=Basendx
17 16 a1i VBasendx¬efndx=Basendx
18 fvex efndxV
19 18 elsn efndxBasendxefndx=Basendx
20 17 19 sylnibr VBasendx¬efndxBasendx
21 2 dmeqi domG=domBasendxV
22 dmsnopg VVdomBasendxV=Basendx
23 1 22 mp1i VBasendxdomBasendxV=Basendx
24 21 23 eqtrid VBasendxdomG=Basendx
25 20 24 neleqtrrd VBasendx¬efndxdomG
26 ndmfv ¬efndxdomGGefndx=
27 25 26 syl VBasendxGefndx=
28 14 27 eqtrid VBasendxefG=
29 4 9 28 3eqtrd VBasendxiEdgG=