Description: In a chain of sets, a maximal element is the union of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | sorpssuni | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sorpssi | |
|
2 | 1 | anassrs | |
3 | sspss | |
|
4 | orel1 | |
|
5 | eqimss2 | |
|
6 | 4 5 | syl6com | |
7 | 3 6 | sylbi | |
8 | ax-1 | |
|
9 | 7 8 | jaoi | |
10 | 2 9 | syl | |
11 | 10 | ralimdva | |
12 | 11 | 3impia | |
13 | unissb | |
|
14 | 12 13 | sylibr | |
15 | elssuni | |
|
16 | 15 | 3ad2ant2 | |
17 | 14 16 | eqssd | |
18 | simp2 | |
|
19 | 17 18 | eqeltrd | |
20 | 19 | rexlimdv3a | |
21 | elssuni | |
|
22 | ssnpss | |
|
23 | 21 22 | syl | |
24 | 23 | rgen | |
25 | psseq1 | |
|
26 | 25 | notbid | |
27 | 26 | ralbidv | |
28 | 27 | rspcev | |
29 | 24 28 | mpan2 | |
30 | 20 29 | impbid1 | |