Metamath Proof Explorer


Theorem sorpssuni

Description: In a chain of sets, a maximal element is the union of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion sorpssuni [⊂]OrYuYvY¬uvYY

Proof

Step Hyp Ref Expression
1 sorpssi [⊂]OrYuYvYuvvu
2 1 anassrs [⊂]OrYuYvYuvvu
3 sspss uvuvu=v
4 orel1 ¬uvuvu=vu=v
5 eqimss2 u=vvu
6 4 5 syl6com uvu=v¬uvvu
7 3 6 sylbi uv¬uvvu
8 ax-1 vu¬uvvu
9 7 8 jaoi uvvu¬uvvu
10 2 9 syl [⊂]OrYuYvY¬uvvu
11 10 ralimdva [⊂]OrYuYvY¬uvvYvu
12 11 3impia [⊂]OrYuYvY¬uvvYvu
13 unissb YuvYvu
14 12 13 sylibr [⊂]OrYuYvY¬uvYu
15 elssuni uYuY
16 15 3ad2ant2 [⊂]OrYuYvY¬uvuY
17 14 16 eqssd [⊂]OrYuYvY¬uvY=u
18 simp2 [⊂]OrYuYvY¬uvuY
19 17 18 eqeltrd [⊂]OrYuYvY¬uvYY
20 19 rexlimdv3a [⊂]OrYuYvY¬uvYY
21 elssuni vYvY
22 ssnpss vY¬Yv
23 21 22 syl vY¬Yv
24 23 rgen vY¬Yv
25 psseq1 u=YuvYv
26 25 notbid u=Y¬uv¬Yv
27 26 ralbidv u=YvY¬uvvY¬Yv
28 27 rspcev YYvY¬YvuYvY¬uv
29 24 28 mpan2 YYuYvY¬uv
30 20 29 impbid1 [⊂]OrYuYvY¬uvYY