Metamath Proof Explorer


Theorem sqrtgt0

Description: The square root function is positive for positive input. (Contributed by Mario Carneiro, 10-Jul-2013) (Revised by Mario Carneiro, 6-Sep-2013)

Ref Expression
Assertion sqrtgt0 A0<A0<A

Proof

Step Hyp Ref Expression
1 0re 0
2 ltle 0A0<A0A
3 1 2 mpan A0<A0A
4 3 imp A0<A0A
5 resqrtcl A0AA
6 4 5 syldan A0<AA
7 sqrtge0 A0A0A
8 4 7 syldan A0<A0A
9 gt0ne0 A0<AA0
10 sq0i A=0A2=0
11 resqrtth A0AA2=A
12 4 11 syldan A0<AA2=A
13 12 eqeq1d A0<AA2=0A=0
14 10 13 imbitrid A0<AA=0A=0
15 14 necon3d A0<AA0A0
16 9 15 mpd A0<AA0
17 6 8 16 ne0gt0d A0<A0<A