Metamath Proof Explorer


Theorem sraip

Description: The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses srapart.a φ A = subringAlg W S
srapart.s φ S Base W
Assertion sraip φ W = 𝑖 A

Proof

Step Hyp Ref Expression
1 srapart.a φ A = subringAlg W S
2 srapart.s φ S Base W
3 ovex W sSet Scalar ndx W 𝑠 S sSet ndx W V
4 fvex W V
5 ipid 𝑖 = Slot 𝑖 ndx
6 5 setsid W sSet Scalar ndx W 𝑠 S sSet ndx W V W V W = 𝑖 W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
7 3 4 6 mp2an W = 𝑖 W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
8 1 adantl W V φ A = subringAlg W S
9 sraval W V S Base W subringAlg W S = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
10 2 9 sylan2 W V φ subringAlg W S = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
11 8 10 eqtrd W V φ A = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
12 11 fveq2d W V φ 𝑖 A = 𝑖 W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
13 7 12 eqtr4id W V φ W = 𝑖 A
14 5 str0 = 𝑖
15 fvprc ¬ W V W =
16 15 adantr ¬ W V φ W =
17 fv2prc ¬ W V subringAlg W S =
18 1 17 sylan9eqr ¬ W V φ A =
19 18 fveq2d ¬ W V φ 𝑖 A = 𝑖
20 14 16 19 3eqtr4a ¬ W V φ W = 𝑖 A
21 13 20 pm2.61ian φ W = 𝑖 A