Metamath Proof Explorer


Theorem srhmsubclem1

Description: Lemma 1 for srhmsubc . (Contributed by AV, 19-Feb-2020)

Ref Expression
Hypotheses srhmsubc.s rSrRing
srhmsubc.c C=US
Assertion srhmsubclem1 XCXURing

Proof

Step Hyp Ref Expression
1 srhmsubc.s rSrRing
2 srhmsubc.c C=US
3 eleq1 r=XrRingXRing
4 3 1 vtoclri XSXRing
5 4 anim2i XUXSXUXRing
6 2 elin2 XCXUXS
7 elin XURingXUXRing
8 5 6 7 3imtr4i XCXURing