Metamath Proof Explorer


Theorem ss2mcls

Description: The closure is monotonic under subsets of the original set of expressions and the set of disjoint variable conditions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d D = mDV T
mclsval.e E = mEx T
mclsval.c C = mCls T
mclsval.1 φ T mFS
mclsval.2 φ K D
mclsval.3 φ B E
ss2mcls.4 φ X K
ss2mcls.5 φ Y B
Assertion ss2mcls φ X C Y K C B

Proof

Step Hyp Ref Expression
1 mclsval.d D = mDV T
2 mclsval.e E = mEx T
3 mclsval.c C = mCls T
4 mclsval.1 φ T mFS
5 mclsval.2 φ K D
6 mclsval.3 φ B E
7 ss2mcls.4 φ X K
8 ss2mcls.5 φ Y B
9 unss1 Y B Y ran mVH T B ran mVH T
10 sstr2 Y ran mVH T B ran mVH T B ran mVH T c Y ran mVH T c
11 8 9 10 3syl φ B ran mVH T c Y ran mVH T c
12 sstr2 mVars T s mVH T x × mVars T s mVH T y X X K mVars T s mVH T x × mVars T s mVH T y K
13 7 12 syl5com φ mVars T s mVH T x × mVars T s mVH T y X mVars T s mVH T x × mVars T s mVH T y K
14 13 imim2d φ x m y mVars T s mVH T x × mVars T s mVH T y X x m y mVars T s mVH T x × mVars T s mVH T y K
15 14 2alimdv φ x y x m y mVars T s mVH T x × mVars T s mVH T y X x y x m y mVars T s mVH T x × mVars T s mVH T y K
16 15 anim2d φ s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y X s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y K
17 16 imim1d φ s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y K s p c s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y X s p c
18 17 ralimdv φ s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y K s p c s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y X s p c
19 18 imim2d φ m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y K s p c m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y X s p c
20 19 alimdv φ p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y K s p c p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y X s p c
21 20 2alimdv φ m o p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y K s p c m o p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y X s p c
22 11 21 anim12d φ B ran mVH T c m o p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y K s p c Y ran mVH T c m o p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y X s p c
23 22 ss2abdv φ c | B ran mVH T c m o p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y K s p c c | Y ran mVH T c m o p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y X s p c
24 intss c | B ran mVH T c m o p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y K s p c c | Y ran mVH T c m o p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y X s p c c | Y ran mVH T c m o p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y X s p c c | B ran mVH T c m o p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y K s p c
25 23 24 syl φ c | Y ran mVH T c m o p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y X s p c c | B ran mVH T c m o p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y K s p c
26 7 5 sstrd φ X D
27 8 6 sstrd φ Y E
28 eqid mVH T = mVH T
29 eqid mAx T = mAx T
30 eqid mSubst T = mSubst T
31 eqid mVars T = mVars T
32 1 2 3 4 26 27 28 29 30 31 mclsval φ X C Y = c | Y ran mVH T c m o p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y X s p c
33 1 2 3 4 5 6 28 29 30 31 mclsval φ K C B = c | B ran mVH T c m o p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y K s p c
34 25 32 33 3sstr4d φ X C Y K C B