Metamath Proof Explorer


Theorem ssltun1

Description: Union law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion ssltun1 A s C B s C A B s C

Proof

Step Hyp Ref Expression
1 ssltex1 A s C A V
2 1 adantr A s C B s C A V
3 ssltex1 B s C B V
4 3 adantl A s C B s C B V
5 2 4 unexd A s C B s C A B V
6 ssltex2 A s C C V
7 6 adantr A s C B s C C V
8 ssltss1 A s C A No
9 8 adantr A s C B s C A No
10 ssltss1 B s C B No
11 10 adantl A s C B s C B No
12 9 11 unssd A s C B s C A B No
13 ssltss2 A s C C No
14 13 adantr A s C B s C C No
15 elun x A B x A x B
16 ssltsepc A s C x A y C x < s y
17 16 3exp A s C x A y C x < s y
18 17 adantr A s C B s C x A y C x < s y
19 18 com12 x A A s C B s C y C x < s y
20 ssltsepc B s C x B y C x < s y
21 20 3exp B s C x B y C x < s y
22 21 adantl A s C B s C x B y C x < s y
23 22 com12 x B A s C B s C y C x < s y
24 19 23 jaoi x A x B A s C B s C y C x < s y
25 15 24 sylbi x A B A s C B s C y C x < s y
26 25 3imp21 A s C B s C x A B y C x < s y
27 5 7 12 14 26 ssltd A s C B s C A B s C