Description: A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of Monk1 p. 33. (Contributed by NM, 2-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Revised by Thierry Arnoux, 6-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqrelrd2.1 | |
|
eqrelrd2.2 | |
||
eqrelrd2.3 | |
||
eqrelrd2.4 | |
||
eqrelrd2.5 | |
||
eqrelrd2.6 | |
||
Assertion | ssrelf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrelrd2.1 | |
|
2 | eqrelrd2.2 | |
|
3 | eqrelrd2.3 | |
|
4 | eqrelrd2.4 | |
|
5 | eqrelrd2.5 | |
|
6 | eqrelrd2.6 | |
|
7 | 3 5 | nfss | |
8 | 4 6 | nfss | |
9 | ssel | |
|
10 | 8 9 | alrimi | |
11 | 7 10 | alrimi | |
12 | eleq1 | |
|
13 | eleq1 | |
|
14 | 12 13 | imbi12d | |
15 | 14 | biimprcd | |
16 | 15 | 2alimi | |
17 | 4 | nfcri | |
18 | 6 | nfcri | |
19 | 17 18 | nfim | |
20 | 19 | 19.23 | |
21 | 20 | albii | |
22 | 3 | nfcri | |
23 | 5 | nfcri | |
24 | 22 23 | nfim | |
25 | 24 | 19.23 | |
26 | 21 25 | bitri | |
27 | 16 26 | sylib | |
28 | 27 | com23 | |
29 | 28 | a2d | |
30 | 29 | alimdv | |
31 | df-rel | |
|
32 | dfss2 | |
|
33 | elvv | |
|
34 | 33 | imbi2i | |
35 | 34 | albii | |
36 | 31 32 35 | 3bitri | |
37 | dfss2 | |
|
38 | 30 36 37 | 3imtr4g | |
39 | 38 | com12 | |
40 | 11 39 | impbid2 | |