Metamath Proof Explorer


Theorem ssrelf

Description: A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of Monk1 p. 33. (Contributed by NM, 2-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Revised by Thierry Arnoux, 6-Nov-2017)

Ref Expression
Hypotheses eqrelrd2.1 xφ
eqrelrd2.2 yφ
eqrelrd2.3 _xA
eqrelrd2.4 _yA
eqrelrd2.5 _xB
eqrelrd2.6 _yB
Assertion ssrelf RelAABxyxyAxyB

Proof

Step Hyp Ref Expression
1 eqrelrd2.1 xφ
2 eqrelrd2.2 yφ
3 eqrelrd2.3 _xA
4 eqrelrd2.4 _yA
5 eqrelrd2.5 _xB
6 eqrelrd2.6 _yB
7 3 5 nfss xAB
8 4 6 nfss yAB
9 ssel ABxyAxyB
10 8 9 alrimi AByxyAxyB
11 7 10 alrimi ABxyxyAxyB
12 eleq1 z=xyzAxyA
13 eleq1 z=xyzBxyB
14 12 13 imbi12d z=xyzAzBxyAxyB
15 14 biimprcd xyAxyBz=xyzAzB
16 15 2alimi xyxyAxyBxyz=xyzAzB
17 4 nfcri yzA
18 6 nfcri yzB
19 17 18 nfim yzAzB
20 19 19.23 yz=xyzAzByz=xyzAzB
21 20 albii xyz=xyzAzBxyz=xyzAzB
22 3 nfcri xzA
23 5 nfcri xzB
24 22 23 nfim xzAzB
25 24 19.23 xyz=xyzAzBxyz=xyzAzB
26 21 25 bitri xyz=xyzAzBxyz=xyzAzB
27 16 26 sylib xyxyAxyBxyz=xyzAzB
28 27 com23 xyxyAxyBzAxyz=xyzB
29 28 a2d xyxyAxyBzAxyz=xyzAzB
30 29 alimdv xyxyAxyBzzAxyz=xyzzAzB
31 df-rel RelAAV×V
32 dfss2 AV×VzzAzV×V
33 elvv zV×Vxyz=xy
34 33 imbi2i zAzV×VzAxyz=xy
35 34 albii zzAzV×VzzAxyz=xy
36 31 32 35 3bitri RelAzzAxyz=xy
37 dfss2 ABzzAzB
38 30 36 37 3imtr4g xyxyAxyBRelAAB
39 38 com12 RelAxyxyAxyBAB
40 11 39 impbid2 RelAABxyxyAxyB