Description: A maps to positive reals. (Contributed by Glauco Siliprandi, 29-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | stirlinglem2.1 | |
|
Assertion | stirlinglem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stirlinglem2.1 | |
|
2 | nnnn0 | |
|
3 | faccl | |
|
4 | nnrp | |
|
5 | 2 3 4 | 3syl | |
6 | 2rp | |
|
7 | 6 | a1i | |
8 | nnrp | |
|
9 | 7 8 | rpmulcld | |
10 | 9 | rpsqrtcld | |
11 | epr | |
|
12 | 11 | a1i | |
13 | 8 12 | rpdivcld | |
14 | nnz | |
|
15 | 13 14 | rpexpcld | |
16 | 10 15 | rpmulcld | |
17 | 5 16 | rpdivcld | |
18 | fveq2 | |
|
19 | oveq2 | |
|
20 | 19 | fveq2d | |
21 | oveq1 | |
|
22 | id | |
|
23 | 21 22 | oveq12d | |
24 | 20 23 | oveq12d | |
25 | 18 24 | oveq12d | |
26 | 25 | cbvmptv | |
27 | 1 26 | eqtri | |
28 | 27 | a1i | |
29 | simpr | |
|
30 | 29 | fveq2d | |
31 | 29 | oveq2d | |
32 | 31 | fveq2d | |
33 | 29 | oveq1d | |
34 | 33 29 | oveq12d | |
35 | 32 34 | oveq12d | |
36 | 30 35 | oveq12d | |
37 | simpl | |
|
38 | simpr | |
|
39 | 28 36 37 38 | fvmptd | |
40 | 17 39 | mpdan | |
41 | 40 17 | eqeltrd | |