Metamath Proof Explorer


Theorem stirlinglem2

Description: A maps to positive reals. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypothesis stirlinglem2.1 A=nn!2nnen
Assertion stirlinglem2 NAN+

Proof

Step Hyp Ref Expression
1 stirlinglem2.1 A=nn!2nnen
2 nnnn0 NN0
3 faccl N0N!
4 nnrp N!N!+
5 2 3 4 3syl NN!+
6 2rp 2+
7 6 a1i N2+
8 nnrp NN+
9 7 8 rpmulcld N2 N+
10 9 rpsqrtcld N2 N+
11 epr e+
12 11 a1i Ne+
13 8 12 rpdivcld NNe+
14 nnz NN
15 13 14 rpexpcld NNeN+
16 10 15 rpmulcld N2 NNeN+
17 5 16 rpdivcld NN!2 NNeN+
18 fveq2 n=kn!=k!
19 oveq2 n=k2n=2k
20 19 fveq2d n=k2n=2k
21 oveq1 n=kne=ke
22 id n=kn=k
23 21 22 oveq12d n=knen=kek
24 20 23 oveq12d n=k2nnen=2kkek
25 18 24 oveq12d n=kn!2nnen=k!2kkek
26 25 cbvmptv nn!2nnen=kk!2kkek
27 1 26 eqtri A=kk!2kkek
28 27 a1i NN!2 NNeN+A=kk!2kkek
29 simpr NN!2 NNeN+k=Nk=N
30 29 fveq2d NN!2 NNeN+k=Nk!=N!
31 29 oveq2d NN!2 NNeN+k=N2k=2 N
32 31 fveq2d NN!2 NNeN+k=N2k=2 N
33 29 oveq1d NN!2 NNeN+k=Nke=Ne
34 33 29 oveq12d NN!2 NNeN+k=Nkek=NeN
35 32 34 oveq12d NN!2 NNeN+k=N2kkek=2 NNeN
36 30 35 oveq12d NN!2 NNeN+k=Nk!2kkek=N!2 NNeN
37 simpl NN!2 NNeN+N
38 simpr NN!2 NNeN+N!2 NNeN+
39 28 36 37 38 fvmptd NN!2 NNeN+AN=N!2 NNeN
40 17 39 mpdan NAN=N!2 NNeN
41 40 17 eqeltrd NAN+