Metamath Proof Explorer


Theorem sto2i

Description: The state of the orthocomplement. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis sto1.1 AC
Assertion sto2i SStatesSA=1SA

Proof

Step Hyp Ref Expression
1 sto1.1 AC
2 1 sto1i SStatesSA+SA=1
3 stcl SStatesACSA
4 1 3 mpi SStatesSA
5 4 recnd SStatesSA
6 1 choccli AC
7 stcl SStatesACSA
8 6 7 mpi SStatesSA
9 8 recnd SStatesSA
10 ax-1cn 1
11 subadd 1SASA1SA=SASA+SA=1
12 10 11 mp3an1 SASA1SA=SASA+SA=1
13 5 9 12 syl2anc SStates1SA=SASA+SA=1
14 2 13 mpbird SStates1SA=SA
15 14 eqcomd SStatesSA=1SA