Metamath Proof Explorer


Theorem subcos

Description: Difference of cosines. (Contributed by Paul Chapman, 12-Oct-2007) (Revised by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion subcos ABcosBcosA=2sinA+B2sinAB2

Proof

Step Hyp Ref Expression
1 halfaddsubcl ABA+B2AB2
2 sincl A+B2sinA+B2
3 sincl AB2sinAB2
4 mulcl sinA+B2sinAB2sinA+B2sinAB2
5 2 3 4 syl2an A+B2AB2sinA+B2sinAB2
6 1 5 syl ABsinA+B2sinAB2
7 6 2timesd AB2sinA+B2sinAB2=sinA+B2sinAB2+sinA+B2sinAB2
8 cossub A+B2AB2cosA+B2AB2=cosA+B2cosAB2+sinA+B2sinAB2
9 cosadd A+B2AB2cosA+B2+AB2=cosA+B2cosAB2sinA+B2sinAB2
10 8 9 oveq12d A+B2AB2cosA+B2AB2cosA+B2+AB2=cosA+B2cosAB2+sinA+B2sinAB2-cosA+B2cosAB2sinA+B2sinAB2
11 1 10 syl ABcosA+B2AB2cosA+B2+AB2=cosA+B2cosAB2+sinA+B2sinAB2-cosA+B2cosAB2sinA+B2sinAB2
12 coscl A+B2cosA+B2
13 coscl AB2cosAB2
14 mulcl cosA+B2cosAB2cosA+B2cosAB2
15 12 13 14 syl2an A+B2AB2cosA+B2cosAB2
16 1 15 syl ABcosA+B2cosAB2
17 16 6 6 pnncand ABcosA+B2cosAB2+sinA+B2sinAB2-cosA+B2cosAB2sinA+B2sinAB2=sinA+B2sinAB2+sinA+B2sinAB2
18 11 17 eqtrd ABcosA+B2AB2cosA+B2+AB2=sinA+B2sinAB2+sinA+B2sinAB2
19 halfaddsub ABA+B2+AB2=AA+B2AB2=B
20 19 simprd ABA+B2AB2=B
21 20 fveq2d ABcosA+B2AB2=cosB
22 19 simpld ABA+B2+AB2=A
23 22 fveq2d ABcosA+B2+AB2=cosA
24 21 23 oveq12d ABcosA+B2AB2cosA+B2+AB2=cosBcosA
25 7 18 24 3eqtr2rd ABcosBcosA=2sinA+B2sinAB2