Description: A subgroup is closed under group subtraction. (Contributed by Mario Carneiro, 18-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subgsubcl.p | |
|
Assertion | subgsubcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgsubcl.p | |
|
2 | eqid | |
|
3 | 2 | subgss | |
4 | 3 | 3ad2ant1 | |
5 | simp2 | |
|
6 | 4 5 | sseldd | |
7 | simp3 | |
|
8 | 4 7 | sseldd | |
9 | eqid | |
|
10 | eqid | |
|
11 | 2 9 10 1 | grpsubval | |
12 | 6 8 11 | syl2anc | |
13 | 10 | subginvcl | |
14 | 13 | 3adant2 | |
15 | 9 | subgcl | |
16 | 14 15 | syld3an3 | |
17 | 12 16 | eqeltrd | |