Metamath Proof Explorer


Theorem subgsubcl

Description: A subgroup is closed under group subtraction. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypothesis subgsubcl.p -˙=-G
Assertion subgsubcl SSubGrpGXSYSX-˙YS

Proof

Step Hyp Ref Expression
1 subgsubcl.p -˙=-G
2 eqid BaseG=BaseG
3 2 subgss SSubGrpGSBaseG
4 3 3ad2ant1 SSubGrpGXSYSSBaseG
5 simp2 SSubGrpGXSYSXS
6 4 5 sseldd SSubGrpGXSYSXBaseG
7 simp3 SSubGrpGXSYSYS
8 4 7 sseldd SSubGrpGXSYSYBaseG
9 eqid +G=+G
10 eqid invgG=invgG
11 2 9 10 1 grpsubval XBaseGYBaseGX-˙Y=X+GinvgGY
12 6 8 11 syl2anc SSubGrpGXSYSX-˙Y=X+GinvgGY
13 10 subginvcl SSubGrpGYSinvgGYS
14 13 3adant2 SSubGrpGXSYSinvgGYS
15 9 subgcl SSubGrpGXSinvgGYSX+GinvgGYS
16 14 15 syld3an3 SSubGrpGXSYSX+GinvgGYS
17 12 16 eqeltrd SSubGrpGXSYSX-˙YS