Metamath Proof Explorer


Theorem submaval

Description: Third substitution for a submatrix. (Contributed by AV, 28-Dec-2018)

Ref Expression
Hypotheses submafval.a A=NMatR
submafval.q Q=NsubMatR
submafval.b B=BaseA
Assertion submaval MBKNLNKQML=iNK,jNLiMj

Proof

Step Hyp Ref Expression
1 submafval.a A=NMatR
2 submafval.q Q=NsubMatR
3 submafval.b B=BaseA
4 1 2 3 submaval0 MBQM=kN,lNiNk,jNliMj
5 4 3ad2ant1 MBKNLNQM=kN,lNiNk,jNliMj
6 simp2 MBKNLNKN
7 simpl3 MBKNLNk=KLN
8 1 3 matrcl MBNFinRV
9 8 simpld MBNFin
10 diffi NFinNkFin
11 9 10 syl MBNkFin
12 diffi NFinNlFin
13 9 12 syl MBNlFin
14 11 13 jca MBNkFinNlFin
15 14 3ad2ant1 MBKNLNNkFinNlFin
16 15 adantr MBKNLNk=Kl=LNkFinNlFin
17 mpoexga NkFinNlFiniNk,jNliMjV
18 16 17 syl MBKNLNk=Kl=LiNk,jNliMjV
19 sneq k=Kk=K
20 19 difeq2d k=KNk=NK
21 20 adantr k=Kl=LNk=NK
22 sneq l=Ll=L
23 22 difeq2d l=LNl=NL
24 23 adantl k=Kl=LNl=NL
25 eqidd k=Kl=LiMj=iMj
26 21 24 25 mpoeq123dv k=Kl=LiNk,jNliMj=iNK,jNLiMj
27 26 adantl MBKNLNk=Kl=LiNk,jNliMj=iNK,jNLiMj
28 6 7 18 27 ovmpodv2 MBKNLNQM=kN,lNiNk,jNliMjKQML=iNK,jNLiMj
29 5 28 mpd MBKNLNKQML=iNK,jNLiMj