Metamath Proof Explorer


Theorem subrgnzr

Description: A subring of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis subrgnzr.1 S=R𝑠A
Assertion subrgnzr RNzRingASubRingRSNzRing

Proof

Step Hyp Ref Expression
1 subrgnzr.1 S=R𝑠A
2 1 subrgring ASubRingRSRing
3 2 adantl RNzRingASubRingRSRing
4 eqid 1R=1R
5 eqid 0R=0R
6 4 5 nzrnz RNzRing1R0R
7 6 adantr RNzRingASubRingR1R0R
8 1 4 subrg1 ASubRingR1R=1S
9 8 adantl RNzRingASubRingR1R=1S
10 1 5 subrg0 ASubRingR0R=0S
11 10 adantl RNzRingASubRingR0R=0S
12 7 9 11 3netr3d RNzRingASubRingR1S0S
13 eqid 1S=1S
14 eqid 0S=0S
15 13 14 isnzr SNzRingSRing1S0S
16 3 12 15 sylanbrc RNzRingASubRingRSNzRing