Metamath Proof Explorer


Theorem subsaluni

Description: A set belongs to the subspace sigma-algebra it induces. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses subsaluni.1 φSSAlg
subsaluni.2 φAS
Assertion subsaluni φAS𝑡A

Proof

Step Hyp Ref Expression
1 subsaluni.1 φSSAlg
2 subsaluni.2 φAS
3 1 2 restuni4 φS𝑡A=A
4 3 eqcomd φA=S𝑡A
5 1 uniexd φSV
6 5 2 ssexd φAV
7 eqid S𝑡A=S𝑡A
8 1 6 7 subsalsal φS𝑡ASAlg
9 8 salunid φS𝑡AS𝑡A
10 4 9 eqeltrd φAS𝑡A