Metamath Proof Explorer


Theorem sucomisnotcard

Description: _om +o 1o is not a cardinal number. (Contributed by RP, 1-Oct-2023)

Ref Expression
Assertion sucomisnotcard ¬ω+𝑜1𝑜rancard

Proof

Step Hyp Ref Expression
1 omelon ωOn
2 sucidg ωOnωsucω
3 1 2 ax-mp ωsucω
4 omensuc ωsucω
5 breq1 x=ωxsucωωsucω
6 5 rspcev ωsucωωsucωxsucωxsucω
7 3 4 6 mp2an xsucωxsucω
8 dfrex2 xsucωxsucω¬xsucω¬xsucω
9 7 8 mpbi ¬xsucω¬xsucω
10 9 intnan ¬sucωOnxsucω¬xsucω
11 oa1suc ωOnω+𝑜1𝑜=sucω
12 1 11 ax-mp ω+𝑜1𝑜=sucω
13 12 eleq1i ω+𝑜1𝑜rancardsucωrancard
14 elrncard sucωrancardsucωOnxsucω¬xsucω
15 13 14 sylbb ω+𝑜1𝑜rancardsucωOnxsucω¬xsucω
16 10 15 mto ¬ω+𝑜1𝑜rancard