Metamath Proof Explorer


Theorem supfz

Description: The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013)

Ref Expression
Assertion supfz N M sup M N < = N

Proof

Step Hyp Ref Expression
1 zssre
2 ltso < Or
3 soss < Or < Or
4 1 2 3 mp2 < Or
5 4 a1i N M < Or
6 eluzelz N M N
7 eluzfz2 N M N M N
8 elfzle2 x M N x N
9 8 adantl N M x M N x N
10 elfzelz x M N x
11 10 zred x M N x
12 eluzelre N M N
13 lenlt x N x N ¬ N < x
14 11 12 13 syl2anr N M x M N x N ¬ N < x
15 9 14 mpbid N M x M N ¬ N < x
16 5 6 7 15 supmax N M sup M N < = N