Metamath Proof Explorer


Theorem supnfcls

Description: The filter of supersets of X \ U does not cluster at any point of the open set U . (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion supnfcls J TopOn X U J A U ¬ A J fClus x 𝒫 X | X U x

Proof

Step Hyp Ref Expression
1 disjdif U X U =
2 simpr J TopOn X U J A U A J fClus x 𝒫 X | X U x A J fClus x 𝒫 X | X U x
3 simpl2 J TopOn X U J A U A J fClus x 𝒫 X | X U x U J
4 simpl3 J TopOn X U J A U A J fClus x 𝒫 X | X U x A U
5 sseq2 x = X U X U x X U X U
6 difss X U X
7 simpl1 J TopOn X U J A U A J fClus x 𝒫 X | X U x J TopOn X
8 toponmax J TopOn X X J
9 elpw2g X J X U 𝒫 X X U X
10 7 8 9 3syl J TopOn X U J A U A J fClus x 𝒫 X | X U x X U 𝒫 X X U X
11 6 10 mpbiri J TopOn X U J A U A J fClus x 𝒫 X | X U x X U 𝒫 X
12 ssidd J TopOn X U J A U A J fClus x 𝒫 X | X U x X U X U
13 5 11 12 elrabd J TopOn X U J A U A J fClus x 𝒫 X | X U x X U x 𝒫 X | X U x
14 fclsopni A J fClus x 𝒫 X | X U x U J A U X U x 𝒫 X | X U x U X U
15 2 3 4 13 14 syl13anc J TopOn X U J A U A J fClus x 𝒫 X | X U x U X U
16 15 ex J TopOn X U J A U A J fClus x 𝒫 X | X U x U X U
17 16 necon2bd J TopOn X U J A U U X U = ¬ A J fClus x 𝒫 X | X U x
18 1 17 mpi J TopOn X U J A U ¬ A J fClus x 𝒫 X | X U x