Metamath Proof Explorer


Theorem suppiniseg

Description: Relation between the support ( F supp Z ) and the initial segment (`' F " { Z } ) ` . (Contributed by Thierry Arnoux, 25-Jun-2024)

Ref Expression
Assertion suppiniseg FunFFVZWdomFsuppZF=F-1Z

Proof

Step Hyp Ref Expression
1 eldif xdomFsuppZFxdomF¬xsuppZF
2 funfn FunFFFndomF
3 2 biimpi FunFFFndomF
4 elsuppfng FFndomFFVZWxsuppZFxdomFFxZ
5 3 4 syl3an1 FunFFVZWxsuppZFxdomFFxZ
6 5 baibd FunFFVZWxdomFxsuppZFFxZ
7 6 notbid FunFFVZWxdomF¬xsuppZF¬FxZ
8 nne ¬FxZFx=Z
9 7 8 bitrdi FunFFVZWxdomF¬xsuppZFFx=Z
10 fvex FxV
11 10 elsn FxZFx=Z
12 9 11 bitr4di FunFFVZWxdomF¬xsuppZFFxZ
13 12 pm5.32da FunFFVZWxdomF¬xsuppZFxdomFFxZ
14 1 13 bitrid FunFFVZWxdomFsuppZFxdomFFxZ
15 3 3ad2ant1 FunFFVZWFFndomF
16 elpreima FFndomFxF-1ZxdomFFxZ
17 15 16 syl FunFFVZWxF-1ZxdomFFxZ
18 14 17 bitr4d FunFFVZWxdomFsuppZFxF-1Z
19 18 eqrdv FunFFVZWdomFsuppZF=F-1Z