Metamath Proof Explorer


Theorem suppiniseg

Description: Relation between the support ( F supp Z ) and the initial segment (`' F " { Z } ) ` . (Contributed by Thierry Arnoux, 25-Jun-2024)

Ref Expression
Assertion suppiniseg Fun F F V Z W dom F supp Z F = F -1 Z

Proof

Step Hyp Ref Expression
1 eldif x dom F supp Z F x dom F ¬ x supp Z F
2 funfn Fun F F Fn dom F
3 2 biimpi Fun F F Fn dom F
4 elsuppfng F Fn dom F F V Z W x supp Z F x dom F F x Z
5 3 4 syl3an1 Fun F F V Z W x supp Z F x dom F F x Z
6 5 baibd Fun F F V Z W x dom F x supp Z F F x Z
7 6 notbid Fun F F V Z W x dom F ¬ x supp Z F ¬ F x Z
8 nne ¬ F x Z F x = Z
9 7 8 bitrdi Fun F F V Z W x dom F ¬ x supp Z F F x = Z
10 fvex F x V
11 10 elsn F x Z F x = Z
12 9 11 bitr4di Fun F F V Z W x dom F ¬ x supp Z F F x Z
13 12 pm5.32da Fun F F V Z W x dom F ¬ x supp Z F x dom F F x Z
14 1 13 syl5bb Fun F F V Z W x dom F supp Z F x dom F F x Z
15 3 3ad2ant1 Fun F F V Z W F Fn dom F
16 elpreima F Fn dom F x F -1 Z x dom F F x Z
17 15 16 syl Fun F F V Z W x F -1 Z x dom F F x Z
18 14 17 bitr4d Fun F F V Z W x dom F supp Z F x F -1 Z
19 18 eqrdv Fun F F V Z W dom F supp Z F = F -1 Z