Metamath Proof Explorer


Theorem suppss2

Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 22-Mar-2015) (Revised by AV, 28-May-2019)

Ref Expression
Hypotheses suppss2.n φkAWB=Z
suppss2.a φAV
Assertion suppss2 φkABsuppZW

Proof

Step Hyp Ref Expression
1 suppss2.n φkAWB=Z
2 suppss2.a φAV
3 eqid kAB=kAB
4 2 adantl ZVφAV
5 simpl ZVφZV
6 3 4 5 mptsuppdifd ZVφkABsuppZ=kA|BVZ
7 eldifsni BVZBZ
8 eldif kAWkA¬kW
9 1 adantll ZVφkAWB=Z
10 8 9 sylan2br ZVφkA¬kWB=Z
11 10 expr ZVφkA¬kWB=Z
12 11 necon1ad ZVφkABZkW
13 7 12 syl5 ZVφkABVZkW
14 13 3impia ZVφkABVZkW
15 14 rabssdv ZVφkA|BVZW
16 6 15 eqsstrd ZVφkABsuppZW
17 16 ex ZVφkABsuppZW
18 id ¬ZV¬ZV
19 18 intnand ¬ZV¬kABVZV
20 supp0prc ¬kABVZVkABsuppZ=
21 19 20 syl ¬ZVkABsuppZ=
22 0ss W
23 21 22 eqsstrdi ¬ZVkABsuppZW
24 23 a1d ¬ZVφkABsuppZW
25 17 24 pm2.61i φkABsuppZW