Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 22-Mar-2015) (Revised by AV, 28-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | suppss2.n | |
|
suppss2.a | |
||
Assertion | suppss2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppss2.n | |
|
2 | suppss2.a | |
|
3 | eqid | |
|
4 | 2 | adantl | |
5 | simpl | |
|
6 | 3 4 5 | mptsuppdifd | |
7 | eldifsni | |
|
8 | eldif | |
|
9 | 1 | adantll | |
10 | 8 9 | sylan2br | |
11 | 10 | expr | |
12 | 11 | necon1ad | |
13 | 7 12 | syl5 | |
14 | 13 | 3impia | |
15 | 14 | rabssdv | |
16 | 6 15 | eqsstrd | |
17 | 16 | ex | |
18 | id | |
|
19 | 18 | intnand | |
20 | supp0prc | |
|
21 | 19 20 | syl | |
22 | 0ss | |
|
23 | 21 22 | eqsstrdi | |
24 | 23 | a1d | |
25 | 17 24 | pm2.61i | |