Metamath Proof Explorer


Theorem suppssof1

Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 28-May-2019)

Ref Expression
Hypotheses suppssof1.s φAsuppYL
suppssof1.o φvRYOv=Z
suppssof1.a φA:DV
suppssof1.b φB:DR
suppssof1.d φDW
suppssof1.y φYU
Assertion suppssof1 φAOfBsuppZL

Proof

Step Hyp Ref Expression
1 suppssof1.s φAsuppYL
2 suppssof1.o φvRYOv=Z
3 suppssof1.a φA:DV
4 suppssof1.b φB:DR
5 suppssof1.d φDW
6 suppssof1.y φYU
7 3 ffnd φAFnD
8 4 ffnd φBFnD
9 inidm DD=D
10 eqidd φxDAx=Ax
11 eqidd φxDBx=Bx
12 7 8 5 5 9 10 11 offval φAOfB=xDAxOBx
13 12 oveq1d φAOfBsuppZ=xDAxOBxsuppZ
14 3 feqmptd φA=xDAx
15 14 oveq1d φAsuppY=xDAxsuppY
16 15 1 eqsstrrd φxDAxsuppYL
17 fvexd φxDAxV
18 4 ffvelcdmda φxDBxR
19 16 2 17 18 6 suppssov1 φxDAxOBxsuppZL
20 13 19 eqsstrd φAOfBsuppZL