Metamath Proof Explorer


Theorem swoso

Description: If the incomparability relation is equivalent to equality in a subset, then the partial order strictly orders the subset. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses swoer.1 R=X×X<˙<˙-1
swoer.2 φyXzXy<˙z¬z<˙y
swoer.3 φxXyXzXx<˙yx<˙zz<˙y
swoso.4 φYX
swoso.5 φxYyYxRyx=y
Assertion swoso φ<˙OrY

Proof

Step Hyp Ref Expression
1 swoer.1 R=X×X<˙<˙-1
2 swoer.2 φyXzXy<˙z¬z<˙y
3 swoer.3 φxXyXzXx<˙yx<˙zz<˙y
4 swoso.4 φYX
5 swoso.5 φxYyYxRyx=y
6 2 3 swopo φ<˙PoX
7 poss YX<˙PoX<˙PoY
8 4 6 7 sylc φ<˙PoY
9 4 sselda φxYxX
10 4 sselda φyYyX
11 9 10 anim12dan φxYyYxXyX
12 1 brdifun xXyXxRy¬x<˙yy<˙x
13 11 12 syl φxYyYxRy¬x<˙yy<˙x
14 df-3an xYyYxRyxYyYxRy
15 14 5 sylan2br φxYyYxRyx=y
16 15 expr φxYyYxRyx=y
17 13 16 sylbird φxYyY¬x<˙yy<˙xx=y
18 17 orrd φxYyYx<˙yy<˙xx=y
19 3orcomb x<˙yx=yy<˙xx<˙yy<˙xx=y
20 df-3or x<˙yy<˙xx=yx<˙yy<˙xx=y
21 19 20 bitri x<˙yx=yy<˙xx<˙yy<˙xx=y
22 18 21 sylibr φxYyYx<˙yx=yy<˙x
23 8 22 issod φ<˙OrY