Metamath Proof Explorer


Theorem swopo

Description: A strict weak order is a partial order. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses swopo.1 φyAzAyRz¬zRy
swopo.2 φxAyAzAxRyxRzzRy
Assertion swopo φRPoA

Proof

Step Hyp Ref Expression
1 swopo.1 φyAzAyRz¬zRy
2 swopo.2 φxAyAzAxRyxRzzRy
3 id xAxA
4 3 ancli xAxAxA
5 1 ralrimivva φyAzAyRz¬zRy
6 breq1 y=xyRzxRz
7 breq2 y=xzRyzRx
8 7 notbid y=x¬zRy¬zRx
9 6 8 imbi12d y=xyRz¬zRyxRz¬zRx
10 breq2 z=xxRzxRx
11 breq1 z=xzRxxRx
12 11 notbid z=x¬zRx¬xRx
13 10 12 imbi12d z=xxRz¬zRxxRx¬xRx
14 9 13 rspc2va xAxAyAzAyRz¬zRyxRx¬xRx
15 4 5 14 syl2anr φxAxRx¬xRx
16 15 pm2.01d φxA¬xRx
17 1 3adantr1 φxAyAzAyRz¬zRy
18 2 imp φxAyAzAxRyxRzzRy
19 18 orcomd φxAyAzAxRyzRyxRz
20 19 ord φxAyAzAxRy¬zRyxRz
21 20 expimpd φxAyAzAxRy¬zRyxRz
22 17 21 sylan2d φxAyAzAxRyyRzxRz
23 16 22 ispod φRPoA