Metamath Proof Explorer


Theorem swrdlen2

Description: Length of an extracted subword. (Contributed by AV, 5-May-2020)

Ref Expression
Assertion swrdlen2 SWordVF0LFLSSsubstrFL=LF

Proof

Step Hyp Ref Expression
1 simp1 SWordVF0LFLSSWordV
2 simpl F0LFF0
3 eluznn0 F0LFL0
4 eluzle LFFL
5 4 adantl F0LFFL
6 2 3 5 3jca F0LFF0L0FL
7 6 3ad2ant2 SWordVF0LFLSF0L0FL
8 elfz2nn0 F0LF0L0FL
9 7 8 sylibr SWordVF0LFLSF0L
10 3 3ad2ant2 SWordVF0LFLSL0
11 lencl SWordVS0
12 11 3ad2ant1 SWordVF0LFLSS0
13 simp3 SWordVF0LFLSLS
14 10 12 13 3jca SWordVF0LFLSL0S0LS
15 elfz2nn0 L0SL0S0LS
16 14 15 sylibr SWordVF0LFLSL0S
17 swrdlen SWordVF0LL0SSsubstrFL=LF
18 1 9 16 17 syl3anc SWordVF0LFLSSsubstrFL=LF