Metamath Proof Explorer


Theorem swrdlend

Description: The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018) (Proof shortened by AV, 2-May-2020)

Ref Expression
Assertion swrdlend WWordVFLLFWsubstrFL=

Proof

Step Hyp Ref Expression
1 swrdval WWordVFLWsubstrFL=ifF..^LdomWi0..^LFWi+F
2 1 adantr WWordVFLLFWsubstrFL=ifF..^LdomWi0..^LFWi+F
3 simpr WWordVFLLFLF
4 3simpc WWordVFLFL
5 4 adantr WWordVFLLFFL
6 fzon FLLFF..^L=
7 5 6 syl WWordVFLLFLFF..^L=
8 3 7 mpbid WWordVFLLFF..^L=
9 0ss domW
10 8 9 eqsstrdi WWordVFLLFF..^LdomW
11 10 iftrued WWordVFLLFifF..^LdomWi0..^LFWi+F=i0..^LFWi+F
12 fzo0n FLLF0..^LF=
13 12 biimpa FLLF0..^LF=
14 13 3adantl1 WWordVFLLF0..^LF=
15 14 mpteq1d WWordVFLLFi0..^LFWi+F=iWi+F
16 mpt0 iWi+F=
17 15 16 eqtrdi WWordVFLLFi0..^LFWi+F=
18 2 11 17 3eqtrd WWordVFLLFWsubstrFL=
19 18 ex WWordVFLLFWsubstrFL=