Metamath Proof Explorer


Theorem swrdnd

Description: The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018) (Proof shortened by AV, 2-May-2020)

Ref Expression
Assertion swrdnd WWordVFLF<0LFW<LWsubstrFL=

Proof

Step Hyp Ref Expression
1 3orcomb F<0LFW<LF<0W<LLF
2 df-3or F<0W<LLFF<0W<LLF
3 1 2 bitri F<0LFW<LF<0W<LLF
4 swrdlend WWordVFLLFWsubstrFL=
5 4 com12 LFWWordVFLWsubstrFL=
6 swrdval WWordVFLWsubstrFL=ifF..^LdomWi0..^LFWi+F
7 6 adantl F<0W<L¬LFWWordVFLWsubstrFL=ifF..^LdomWi0..^LFWi+F
8 zre FF
9 0red F0
10 8 9 ltnled FF<0¬0F
11 10 3ad2ant2 WWordVFLF<0¬0F
12 lencl WWordVW0
13 12 nn0red WWordVW
14 zre LL
15 13 14 anim12i WWordVLWL
16 15 3adant2 WWordVFLWL
17 ltnle WLW<L¬LW
18 16 17 syl WWordVFLW<L¬LW
19 11 18 orbi12d WWordVFLF<0W<L¬0F¬LW
20 19 biimpcd F<0W<LWWordVFL¬0F¬LW
21 20 adantr F<0W<L¬LFWWordVFL¬0F¬LW
22 21 imp F<0W<L¬LFWWordVFL¬0F¬LW
23 ianor ¬0FLW¬0F¬LW
24 22 23 sylibr F<0W<L¬LFWWordVFL¬0FLW
25 3simpc WWordVFLFL
26 12 nn0zd WWordVW
27 0z 0
28 26 27 jctil WWordV0W
29 28 3ad2ant1 WWordVFL0W
30 ltnle FLF<L¬LF
31 8 14 30 syl2an FLF<L¬LF
32 31 3adant1 WWordVFLF<L¬LF
33 32 biimprcd ¬LFWWordVFLF<L
34 33 adantl F<0W<L¬LFWWordVFLF<L
35 34 imp F<0W<L¬LFWWordVFLF<L
36 ssfzo12bi FL0WF<LF..^L0..^W0FLW
37 25 29 35 36 syl2an23an F<0W<L¬LFWWordVFLF..^L0..^W0FLW
38 24 37 mtbird F<0W<L¬LFWWordVFL¬F..^L0..^W
39 wrddm WWordVdomW=0..^W
40 39 sseq2d WWordVF..^LdomWF..^L0..^W
41 40 notbid WWordV¬F..^LdomW¬F..^L0..^W
42 41 3ad2ant1 WWordVFL¬F..^LdomW¬F..^L0..^W
43 42 adantl F<0W<L¬LFWWordVFL¬F..^LdomW¬F..^L0..^W
44 38 43 mpbird F<0W<L¬LFWWordVFL¬F..^LdomW
45 44 iffalsed F<0W<L¬LFWWordVFLifF..^LdomWi0..^LFWi+F=
46 7 45 eqtrd F<0W<L¬LFWWordVFLWsubstrFL=
47 46 exp31 F<0W<L¬LFWWordVFLWsubstrFL=
48 47 impcom ¬LFF<0W<LWWordVFLWsubstrFL=
49 5 48 jaoi3 LFF<0W<LWWordVFLWsubstrFL=
50 49 orcoms F<0W<LLFWWordVFLWsubstrFL=
51 3 50 sylbi F<0LFW<LWWordVFLWsubstrFL=
52 51 com12 WWordVFLF<0LFW<LWsubstrFL=