| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-3an |
|
| 2 |
1
|
biimpri |
|
| 3 |
2
|
3adant2 |
|
| 4 |
|
ssfzo12 |
|
| 5 |
3 4
|
syl |
|
| 6 |
|
elfzo2 |
|
| 7 |
|
eluz2 |
|
| 8 |
|
simprrl |
|
| 9 |
8
|
adantr |
|
| 10 |
|
simpll |
|
| 11 |
|
zre |
|
| 12 |
11
|
adantr |
|
| 13 |
12
|
adantl |
|
| 14 |
|
zre |
|
| 15 |
14
|
adantr |
|
| 16 |
15
|
adantr |
|
| 17 |
|
zre |
|
| 18 |
17
|
adantr |
|
| 19 |
|
letr |
|
| 20 |
13 16 18 19
|
syl2an23an |
|
| 21 |
20
|
imp |
|
| 22 |
9 10 21
|
3jca |
|
| 23 |
22
|
exp31 |
|
| 24 |
23
|
com23 |
|
| 25 |
24
|
expdimp |
|
| 26 |
25
|
impancom |
|
| 27 |
26
|
com13 |
|
| 28 |
27
|
3adant3 |
|
| 29 |
28
|
com12 |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
impcom |
|
| 32 |
31
|
com12 |
|
| 33 |
32
|
adantr |
|
| 34 |
33
|
imp |
|
| 35 |
|
eluz2 |
|
| 36 |
34 35
|
sylibr |
|
| 37 |
|
simpl2r |
|
| 38 |
37
|
adantl |
|
| 39 |
17
|
adantl |
|
| 40 |
|
zre |
|
| 41 |
40
|
ad3antlr |
|
| 42 |
|
zre |
|
| 43 |
42
|
adantl |
|
| 44 |
43
|
adantl |
|
| 45 |
44
|
adantr |
|
| 46 |
|
ltletr |
|
| 47 |
39 41 45 46
|
syl3anc |
|
| 48 |
47
|
ex |
|
| 49 |
48
|
com23 |
|
| 50 |
49
|
3adant3 |
|
| 51 |
50
|
expcomd |
|
| 52 |
51
|
adantld |
|
| 53 |
52
|
imp |
|
| 54 |
53
|
com13 |
|
| 55 |
54
|
adantr |
|
| 56 |
55
|
imp |
|
| 57 |
56
|
imp |
|
| 58 |
|
elfzo2 |
|
| 59 |
36 38 57 58
|
syl3anbrc |
|
| 60 |
59
|
exp31 |
|
| 61 |
60
|
3adant1 |
|
| 62 |
7 61
|
sylbi |
|
| 63 |
62
|
imp |
|
| 64 |
63
|
3adant2 |
|
| 65 |
6 64
|
sylbi |
|
| 66 |
65
|
com12 |
|
| 67 |
66
|
ssrdv |
|
| 68 |
67
|
ex |
|
| 69 |
5 68
|
impbid |
|