| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfznn0 |
|
| 2 |
1
|
anim2i |
|
| 3 |
2
|
adantr |
|
| 4 |
|
pfxval |
|
| 5 |
3 4
|
syl |
|
| 6 |
5
|
oveq1d |
|
| 7 |
|
simpl |
|
| 8 |
|
simpr |
|
| 9 |
|
0elfz |
|
| 10 |
1 9
|
syl |
|
| 11 |
10
|
adantl |
|
| 12 |
7 8 11
|
3jca |
|
| 13 |
12
|
adantr |
|
| 14 |
|
elfzelz |
|
| 15 |
|
zcn |
|
| 16 |
15
|
subid1d |
|
| 17 |
16
|
eqcomd |
|
| 18 |
14 17
|
syl |
|
| 19 |
18
|
adantl |
|
| 20 |
19
|
oveq2d |
|
| 21 |
20
|
eleq2d |
|
| 22 |
19
|
oveq2d |
|
| 23 |
22
|
eleq2d |
|
| 24 |
21 23
|
anbi12d |
|
| 25 |
24
|
biimpa |
|
| 26 |
|
swrdswrd |
|
| 27 |
13 25 26
|
sylc |
|
| 28 |
|
elfzelz |
|
| 29 |
28
|
zcnd |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
adantl |
|
| 32 |
31
|
addlidd |
|
| 33 |
|
elfzelz |
|
| 34 |
33
|
zcnd |
|
| 35 |
34
|
adantl |
|
| 36 |
35
|
adantl |
|
| 37 |
36
|
addlidd |
|
| 38 |
32 37
|
opeq12d |
|
| 39 |
38
|
oveq2d |
|
| 40 |
6 27 39
|
3eqtrd |
|
| 41 |
40
|
ex |
|